EMMA Reference Manual

EMMA Reference Manual
Copyright © 2001-2006 Vlad Roubtsov

Table of Contents

1. Installation and SysStem REQUIFEMENESuuiiiiiiie e 1
2. EMMA TOOl REFEIENCE ...uiiiiiiii ettt e e e e e e e e 3
L OVEIVIBIW ittt ettt et e et e et e e et e e et e e ea e e e e e e eaa e eaas 3

2. <EMM@J AVAS/EMMEAT U .ouitiie e e e e e e e e e e et e e e e e e e e et e et e enaeanaaanns 4

50 R B 1= o T (o) o 4

A N N IR = 6

2.3. ComMMAaNd lINEUSAGEceeeiiee et 8
RIS 4 o 1 PP 10

TN I B 1< o 1 1 o H PP 10

G N N BT o[- R 13

3.3. ComMaNd [INE USAGE «...vueeieieiie et e e e e e e e e e aeas 16

S = o To L = Lo 17

A1, DESCIIPLION ettt ettt et e et e e e e e e 17

4.2 ANT USBOE .. ettt ettt ettt ettt e e et e e e er e 19

4.3. ComMaNd lINEUSBGEeeviei ettt 24

IR 1= o[> 4 1= o[26

L300 R B 7= o 1 o] o 26

LI L A o = 26

5.3. ComMaNd lINEUSAGEceeeriieiiiii e 27

6. Defining the iNSIrumentation Satuiiiiiiii e 28

6.1. How EMMA determines which classes get instrumentedccoeeeeee. 28

6.2. Coverage filtarsoii i 29

7. Common ANT task and command line 0ptionSccvveiiiieiiiiiiii e, 32

7.1. Common ANT task attributes and nested elementsccooevvviiiiiiiiinnneenn, 32

7.2. COMIMON OPLIONS ...ttt e ettt ettt et e e et e e e b e eeaans 33

3. EMMA Property REFEIENCEciiiiiiiiiiie et 35
1. Specifying EMMA PrOPErtiES .. cuuiiie et 35

2. EMMA Property SUMIMBIYcuueeeiieeieiei e ease e e e e s ae e ae s aeaeaneanaanns 36
L1053 42

List of Tables

2.1. EMMA ANT tasksand command lineto0lSoviiiiiiiiiiiiiiiie e 3
2.2. <instr>/instr output MOE SUMMEBIYuuevrneriteeeieeeieeei e e e s e e e e e e eeaneeeeneeannas 13
2.3. Common EMMA ANT task attribULEScoviiniiii e, 32
2.4. Common EMMA ANT task nested €lementsccoeeiiiiiiiiiiii e, 33
3.1 EMMA fil@ OULPUL PrOPEITIES ...ttt e e e e e 36
3.2. EMMA report generation ProPErtiESvveei e e e e e e 38
3.3. EMMA instrumentation ProPertiESuueeenieii e e e e e e e e e e e e e e e 40
T/ SV 1Y/ AN oo To T Te l o o o= 1= 41

Chapter 1. Installation and System
Requirements

Supported JRE versions. EMMA has been implemented to work in any J2SE runtime environment.
For performance reasons, EMMA tools and runtime can benefit from (but do not require) J2SE APIs
available in J2SE versions 1.3 and 1.4. EMMA command line tools, ANT tasks, and runtime have been
tested in avariety of JREs from Sun Microsystem, IBM, and BEA.

Supported ANT versions. EMMA ANT tasks work with Apache ANT 1.4.1 and later versions.
External library dependencies. EMMA has no external Javaor native library dependencies.

Operating system. EMMA is a pure Java application and does not use VMPI or other profiling
interfaces requiring native libraries. It should provide identical functionality on any operating system
supported by J2SE v1.2+,

EMMA distribution. EMMA is contained in two Java class archives (found in the | i b subdirectory of
EMMA distribution):

emma. j ar
Contains the implementation of EMMA core components command line tools, and EMMA runtime
classes (EMMA classes that are needed by Java application code that has been instrumented for
coverage).

emma_ant . j ar
Contains the implementation of EMMA ANT tasks (this archive depends on emma. j ar and does
not overlap with it in content).

General installation considerations. "Installing” EMMA simply implies making enma. j ar and
ema_ant . j ar available to the Java Runtime Environment (JRE) and Apache ANT runtime, as

appropriate.

There are two distinct runtime cases for EMMA:

a Execution of an EMMA command linetool or ANT task.

b. Execution of some Java code that has been instrumented for coverage. Note that every
EMMA-instrumented class becomes dependent on EMMA runtime classes (contained in
emma. j ar).

Installing EMMA core/fruntime library. Accordingly, to run EMMA command line tools or
EMMA-instrumented applications you need to add enmra. j ar to the appropriate JRE classpath. You
can do it either via the - cp JVM option or by adding enma. j ar as an installed JRE extension (by
copying enma. j ar tol i b/ ext subdirectory of your JRE or by setting the j ava. ext. di rs JVM
system property to include the | i b subdirectory of EMMA distribution. See Sun's documentation on
Installed Extentions [http://java.sun.com/docs/books/tutorial/ext/basics/install.htmi] and
j ava. ext . di rs [http://java.sun.com/j2se/1.4.2/docs/guide/extensions/spec.htmi#installed] property

YnasunM icrosystems-compatible JRE prior to version 1.3 the runtime coverage data is dumped (in the offline coverage mode)
only when the VM isterminated viaCt r | - Cor an equivalent signal.

1

http://java.sun.com/docs/books/tutorial/ext/basics/install.html
http://java.sun.com/j2se/1.4.2/docs/guide/extensions/spec.html#installed

Installation and System Requirements

for more details).

The JRE extension option ispreferred

It is highly recommended to install enma. j ar as a JRE extension. This simplifies EMMA
usage with application containers (IBM Websphere, BEA WebLogic, etc). Furthemore,
installed JRE extensions are trusted by default: the instrumented application classes will
automatically have the necessary runtime permissions for dumping coverage data files. Note
that the JRE used by an application container may not necessarily be the same one you use
from command line or ANT.

Setting up EMMA ANT tasks. To run EMMA ANT tasks, one additional configuration step inside
bui | d. xm isrequired:

<l-- EMMA distribution directory: -->

<property nanme='ema.dir' val ue="your EMMA install |ocation" />
<path id="emmua.lib" >

<fileset dir="${emm.dir}' includes='lib/*.jar' />
</ pat h>

<t askdef resource='enma_ant.properties' classpathref="ema.lib" />

EMMA lib path

The bui | d. xm snippet shown above defines a path element with emma. | i b reference id.
Although this is not strictly necessary (the <cl asspat h> element nested inside the
<t askdef > could have worked just as well), such a path element usually comes in handy
elsewhereinthebui | d. xm .

Chapter 2. EMMA Tool Reference

1. Overview

EMMA functionality is implemented by a set of components responsible for class instrumentation,
metadata and coverage data processing, and coverage report generation. Each component has adapters
that expose its functionality as an ANT task and a command line tool. To reflect this design, each of the
following reference subsections starts by detailing the overall functionality of a given component,

followed by its concrete ANT and command line usage.

The following table summarizes EMMA ANT tasks and their equivalent command line tools:

Table2.1. EMMA ANT tasks and command linetools

ANT task Command line Functionality Output
tool
on-the-fly processing mode

<emmajava> emmarun Executesastandalone Java |One or several coverage
applicationin EMMA reports and (optionally) a
instrumenting classloader coverage session raw data
without a separate file.
instrumentation phase.

offline processing mode

<instr> subtask instr command Instruments a set of classesin |Instrumented classes and
agiven list of directories archives and a coverage
and/or archivesand output. | metadatafile.

<report>subtask |report command |Combines class metadataand |One or several coverage
coverage runtime data to reports (plain text, HTML,
produce coverage reports. XML).

<merge> subtask |mergecommand |Mergesand compacts several |A single merged coverage
metadata, coverage, or session datafile.
session data files.

Subtasks and commands. For reasons that include modularity and consistency of common option

behavior EMMA offline coverage tools are used as subtasks of the "umbrella’ <emma> ANT task:

<emma ...
<merge ...

</ }n'e'rge>
<report

>

L >

</report>

</ emma>

or as subcommands of the "umbrella' emma command line command:

EMMA Tool Reference

>java emma instr -ip out/classes/
>java enmm report -in coverage.em coverage. ec ...

Note that in the ANT case, <emma> can contain an arbitrary sequence of subtasks (including mutliple
subtasks of the same kind, which are executed in the exact sequence as they are specified). In addition to
the already mentioned advantages, this allows entire blocks of EMMA tool invocations to be
enabled/disabled and configured using attributes of the parent <emma> ANT task.

EMMA properties cascade. Some aspects of EMMA tool/task behavior can be modified using
properties which can be set in a variety of ways. via VM system properties, via an external file, via
ANT (sub)task attributes or command line tool options. The task-subtask organization helps with this
EMMA configuration as well. The general rule of thumb here is that properties within a more specific
context (an ANT subtask vs <emma> parent task, a tool setting vs a global VM property, etc) inherit
their values from the surrounding contexts, but can also override them. For complete details see EMMA
property lookup order. [36]

In the remainder of this manual, the same tool will be frequently referred to as
<ANT _t ool _nane>/command_l i ne_t ool _nane.

Overall EMMA processing sequence. The general sequence of steps when using EMMA depends on
your chosen coverage mode:

e When using EMMA's on-the-fly coverage mode, there is little to do in addition to how you would
normally run your application or testsuite: you use <emmajava>/emmarun as the new startup class
and optionally tell it where to place the coverage report(s)®.

* When using EMMA's offline coverage mode, the general sequence of tool/task invocationsis:

1. Inoneor severa passes, use <instr>/instr to instrument class directories and archivefiles.

2. Execute your application or test suite using the instrumented classes (one or several runs).

3. Optionally, merge and compact all metadata and runtime coverage files using <mer ge>/mer ge.
4. In one or severa passes, use <report>/report to combine class metadata with the desired

runtime coverage data profile(s) and generate the desired coverage report(s).

EMMA data files are untyped. EMMA tools use binary data files for storing instrumentation and
runtime coverage results. EMMA files are not typed: they do not require a particular name or extension.
Furthermore, each data file is a mini-database that acts as an envelope for an arbitrary segquence of
metadata and/or runtime coverage data dumps. It is up to the user how to structure their work with
EMMA: either accumulate everything in a single file or use a dedicated file for every tool. The only
restriction isthat EMMA files can only grow (once new datais merged in, it cannot be removed).

2. <emmajava>/emmarun

<emmajava>/emmarun — instrumented application runner (on-the-fly instrumentation mode).

2.1. Description

1Usua||y, <emmajava> (emmarun) runs correspond to completely independent application/testsuite runs. However, its - r aw
option could be used to retain coverage session data files across different runs, to be processed later by tools like <report>/report
and <mer ge>/mer ge.

EMMA Tool Reference

<emmajava>/emmarun pairs an advanced custom classloader with a combination of core interna
components of <instr>/instr and <report>/report to form a unique convenience tool in EMMA kit: an
application runner that instruments classes on the fly and generates coverage reports without any need
for a separate build or any intermediate work files alltogether.

<emmajava>/emmarun convenience is especialy apparent in command line mode, because its option
names intentionally mimick the familiar java options: a Java application launch command line could be
made coverage-enabled by inserting a single new word (emmarun) into the command line. Similarly,
the ANT version of this tool is an extension of ANT's standard <java> task. <emmajava>/emmarun
can execute as little as a single Java class or as much as a complex Swing application made up of
hundreds of classes, al with equally small instrumentation overhead.

Thinking of <emmajava>/emmarun as a combination of EMMA class instrumentor and report
generator is a good way to remember its ANT attributes and command line options: in the reference
sections that follow most of them are documented as identical to their namesakes in <instr>/instr and
<report>/report.

What gets instrumented. The default <emmajava>/emmarun behavior is to instrument only the
classes that are loaded by the JVM for the running application. The resulting report will not even
mention classes that were never loaded and which potentially decrease your coverage percentages. If
your objective is to get a complete coverage report (as you would from an offline combination of
<instr>/instr and <report>/report) you should use the option for a full classpath scan, possibly in
combination with some coverage filters.

Compatibility. At runtime, <emmajava>/emmarun's instrumenting classloader installs itself as the
application classloader, bypassing the standard system classloader. It uses a smart class delegation
strategy, whereby it automatically detects JRE core and extension classes without having to filter by
class names (the frequently used, but inadequate, delegation strategy). Coupled with full support for
Cl ass- Pat h manifest entries and - j ar option, the resulting EMMA runtime will correctly run most
standalone Java programs. However, certain cases are exceptions:

» Java code referencing j ava.l ang. O assLoader. get Syst enCl assLoader () (either
directly or viaCl assLoader . fi ndSyst enCCl ass() and related methods) instead of using the
current or thread context loaders will bypass <emmajava>/emmarun classloader, causing
subsequent classes to be loaded at the wrong node of the classloader hierarchy. Such coding patterns
should really be considered bugs and are not supported. Such code could be patched up on the fly
during instrumentation, but a reliable solution is expensive in terms of processing. Switching to
offline instrumentation is an easy workaround.

» Java applications designed around their own custom classloaders and classpaths most likely will not
work with <emmajava>/emmarun (at best, they will run fine but coverage instrumention will not
occur). Application containers (Apache tomcat, BEA Weblogic, IBM Websphere, etc) are the
common case here. Again, switching to offline instrumentation is an easy alternative.

<emmajava> is always forked. ANT's in-process classdoading model is not sufficiently
JRE-compatible. ANT's class delegation in the standard <java> task in f or k=" f al se' (in-process)
mode is based on name matching (with a hardcoded set of name filters) and inevitably fails for
applications that depend on non-standard JRE extensions. To support EMMA deployment as a JRE
extension <emmajava> always forces fork='true' to ensure correct execution (unless its
enabl ed attribute makesit a pass-through).

Internal EMMA properties that affect classioading and class instrumentation. Severa EMMA
property settings affect instrumentation and classloading behavior done by <emmajava>/emmarun;

* instr.do_suid.compensation []

EMMA Tool Reference

» ingtr.exclude_synthetic_ methods|]

* instr.exclude_bridge methods]

Changing the default classloading behavior should be done by experienced Java users only. Most of
instrumentation-related properties should normally be left with their default values.
instr.do_suid.compensation [] can be set to fal se to gain extra instrumentation processing speed

when runtime execution does not involve class de-serialization from existing files or serialization across
JVMs.

2.2. ANT usage

<emmajava> task is an implicit combination of <instr> and <report> tasks and most of its attributes
and nested elements are the same as for those two tasks combined.

Parameters specified as attributes

Attribute |D&ecription | Required

[stock ANT <java> task attributes
[http://ant.apache. or g/ manual / Cor eTasks/java. ht m]]

[cormpbn EMVA task attributes] No
I'i bcl asspath A path-like structure containing EMMA core Yes, unless
(emma. j ar). EMMA is
installed as the
JRE extension
I i bcl asspat hr ef Sameasl| i bcl asspat h, but givenasa Yes, unless
reference to a path defined elsewhere. EMMA is
installed as the
JRE extension
ful | net adat a Indicates whether the entire classpath should be No
added to the coverage metadata (default: f al se).
dunpsessi ondat a Indicates whether the session (metadata+coverage) No

data resulting from this coverage run should be
dumped to afile. Useful for post-run coverage
report generation (default: f al se).

sessi ondat afi |l e, If dunpsessi ondat a=' true' , overridesthe No
outfile location to store session data (default: file

cover age. es inthe current directory). Ignored

otherwise.
ner ge Indicates whether the session data should be No

merged into the destination sessi ondat afi | e,
if any (default: t r ue). Any existing dataiis
clobbered otherwise.

filter Adds a coverage filter. See Section 6.2, “Coverage No
filters’ [29] for general description of EMMA
coverage filters and Section 6.2.1, “filter syntax:
ANT” [30] specifically for ANT syntax. This
attribute plays arole equivalent to the same
atribute of <instr>.

sour cepat h A path-like structure that can be used to point the No
HTML report generator in

6

http://ant.apache.org/manual/CoreTasks/java.html

EMMA Tool Reference

Attribute Description Required
emmarun to the location of your Java source files.
Itisinterpreted asalist of directories (separated by
the OS-specific classpath separator or comma)
containing . j ava source files. The local path
names within each directory should reflect class
package names. This attribute is equivalent to the
same attribute of <report> task.
sour cepat hr ef Same assour cepat h, but given as areference No
to a path defined elsewhere.
units Equivalent to the same attribute of <report>. No
depth Equivalent to the same attribute of <report>. No
col ums Equivalent to the same attribute of <report>. No
sort Equivalent to the same attribute of <report>. No
metrics Equivalent to the same attribute of <report>. No
encodi ng Equivalent to the same attribute of <report>. No
Parameters specified as nested elements
Element |Description | Required
[stock ANT <java> task nested el enents
[http://ant.apache. or g/ manual / Cor eTasks/java. ht n]]
[commpon EMMVA task nested el enent s] No
<filter> Adds a coverage filter. See Section 6.2, “Coverage No
filters’ [29] for general description of EMMA
coverage filters and Section 6.2.1, “filter syntax:
ANT"” [30] specifically for ANT syntax. This
nested element plays arole equivalent to the same
element of <instr>.
<sour cepat h> A path-like structure that can be used to point the No
HTML report generator in
<emmajava>/emmar un to the location of your
Java source files. This element is equivalent to the
same nested element of <report> task.
<t xt > Equivalent to the same nested element of No
<report>.
<htm > Equivalent to the same nested element of No (<t xt >
<report>. implied by
default)
<xml > Equivalent to the same nested element of No (<t xt >
<report>. implied by
default)

<t xt >, <ht m >, and <xm > nested elements. These nested elements create plain text, HTML, and
XML coverage reports, respectively. If none is specified, the plain text report is implied (at most one
configurator of any given report type can be nested inside a given <emmajava> call). Configuration of

these elements is described in the equivalent section of <report> task reference page.

http://ant.apache.org/manual/CoreTasks/java.html

EMMA Tool Reference

Examples

» Generate plain text and HTML reports with the default parameters:

<emmaj ava enabl ed="${ emma. enabl ed}" |i bcl asspat href ="emma. i b"
filter="%{emm.filter}" sourcepath="%${src.dir}"
cl assname="Mi n" cl asspat href ="run. cl asspat h"

<I-- since this task is an extension of stock <java> normal <java>
options are still available: -->
<arg val ue="soneargval ue" />

overage.txt" />

<txt outfile="${coverage.dir}/c
r}/coverage. htm " />

<htm outfil e="3${coverage. di
</ emmaj ava>

e Do a full metadata scan (of run.cl asspath), generate an HTML report with some
customization, use a <dir set> to set the sourcepath:

<emmaj ava enabl ed="${ emma. enabl ed}" |i bcl asspat href ="enmma. i b"
ful | ret adat a="yes"
cl assnanme="Mai n" cl asspat href ="run. cl asspat h"
>
<sour cepat h>
<di rset dir="${basedir}" >
<i ncl ude nane="**/src" />
</ dirset>
</ sour cepat h>

<htm outfile="${coverage.dir}/index.htm"

col ums="nane, nethod, Iine"
sort="+line, +name"
metrics="Iline: 80"

/>
</ emmaj ava>

» Don't generate any reports, just dump the raw coverage session data for now:

<emmaj ava enabl ed="${ emma. enabl ed}" |i bcl asspat href ="emma. i b"
ful | met adat a="yes" dunpsessi ondat a="yes"
cl assname=" Mai n"
cl asspat href ="run. cl asspat h"

/>

2.3. Command line usage

Synopsis
j ava enmmar un [(1) EMMA options] -cpcl asspat h...cl ass [ar gs...]
j ava ermmar un [(1) EMMA optiong] -jarj arfil e [args..]
(1) [f] [-ix filter patterns..] [-r report types..] [-sp sourcepath..] [-raw] [-out
session data fil e][-mergebool ean] [conmon opti ons]

alternative form:
java emma run{sanme as above..}

EMMA Tool Reference

Options

[common comand | i ne options]

-f, -full netadata
This flag indicates whether the entire classpath (- cp) should be added to the coverage metadata
(default: f al se). Without this flag, only the classes explicitly loaded by the VM will be in the
instrumentation set.

-ix, -filter filter patterns..
This repeatable option adds a coverage filter. See Section 6.2, “Coverage filters’ [29] for general
description of EMMA coverage filters and Section 6.2.2, “filter syntax: command ling” [31]
specifically for command line syntax. It is equivalent to the same option of instr tool.

-r, -report (txt|htm|xm)..
This repeatable option selects the type of coverage report(s) to generate (default: t xt). It is
equivalent to the same option of report tool.

-sp, -sourcepath list of source directories..
This repeatable option can be used to point the HTML report generator in <emmajava>/emmar un
to the location of your Java source files. Equivalent to the same option of report tool.

-raw, -sessiondata
This flag indicates whether the session (metadatat+coverage) data resulting from this coverage run
should be dumped to afile. Useful for post-run coverage report generation (default: f al se).

-out, -outfile session data file
If -raw flag is set, this option overrides the location to store session data (default: file
cover age. es in the current directory). Ignored otherwise.

-merge (y[es]|n[o]) | . o
Indicates whether the session data should be merged into the destination out f i | e, if any (default:
t rue). Any existing datais clobbered otherwise.

report generation options..
Unlike its ANT equivalent, emmarun command line tool does not have dedicated options for
controlling coverage report generation. If necessary, they can be set using generic -D, -properties,
and other mechanismes.
So, for example, to change the default location of the HTML report you would override the
report.out.file[] property:
>j ava enmarun -Dreport.htm .out.fil e=mycoveragedir/nyfile.htm

(report.htm .out.file can be abbreviated to report.out.file if the command
generates a single report type)

Examples
* Run an application and generate plain text and XML reports with default parameters:
>java emmarun -r txt,xm -jar Sw ngSet2.jar

* Run an application and generate an HTML report with some customization and linking to the

9

EMMA Tool Reference

application source code:
>java emmarun -r htm -Dreport.col ums=nane, net hod, | ine -sp src/ -jar Sw ngSet 2.
* Run an application and don't generate any reports, just dump the raw coverage session data:

>java emmarun -raw -jar Sw ngSet2.jar

Diagnostics

The default EMMA command line tool behavior is not to use Syst em exit () on exit unless an
explicit - exi t option is specified. If that is done, the error codes returned viaSyst em exi t () areas
follows:

0 | Successful completion.

1|Failure due to incorrect option usage. This error code is aso returned when command line
usage (- h) isrequested explicitly.

2 |All other failures.

3. <instr>/instr

<instr>/instr — offline class instrumentor.

3.1. Description

<instr>/instr is EMMA's offline class instrumentor. It adds bytecode instrumentation to all classes
found in an instrumentation path that also pass through user-provided coverage filters. Additionally, it
produces the class metadata file necessary for associating runtime coverage data with the original class
definitions during coverage report generation.

Instrumentation path. Note that the classes to be instrumented are taken from a path element that is
exactly like the kind taken by normal JDK tools and ANT tasks: it is a list of directories (containing
.class files) and . jar/. zi p archives (specified as an arbitrary number of i nstrpath (-i p)
options). All non-existent or duplicate entries in the instrumentation path are effectively ignored during
processing.

Cl ass- Pat h manifest entries

Note that <instr>/instr processes Cl ass- Pat h entries in the manifests of class archives that
it encounters. This is by design and is the desirable behavior (especialy in the overwrite and
fullcopy output modes), but care needs to be taken to avoid processing unintended implicit path
segments.

Output modes. To accomodate different build and testsuite designs <instr>/instr has three different
modes for how it outputs instrumented classes:

copy
In this mode, al instrumented classes are output to a single destination directory, regardiess of

whether the source classes came from a directory or an archive. Furthemore, only the classes and

10

EMMA Tool Reference

archive entries that are in the instrumentation set are written out. The idea here is to process just the
necessary classesin as few disk I/O operations as possible.

For coverage-enabled application/testsuite runs the destination directory needs to be placed in the
classpath ahead of the original classes. If this is inconvenient (say, because you need to package
classes in archives before you can run), theover wr i t e mode might be a better option.

overwite
This mode is similar to copy, except it overwrites the original class and archive files. Thisisideal
as a pre-packaging step turned on only when coverage-enabled application/testsuite runs are needed.
Its advantage over the copy mode is that it can do jar-to-jar processing and eliminates the need to
prepend a special output directory to the classpath. Its disadvantage is the extra CPU and disk |/O
times needed to duplicate archive entries that are not being instrumented?.

ful | copy
This mode is a hybrid between copy and overwrite. It offers the convenience of mixed
individual class file and jar-to-jar processing without having to overwrite the original content. In
this mode, the destination directory is split into two subdirectories, cl asses and | i b, which
accept instrumented class files and instrumented class archives, respectively.

Note that because in this mode <instr>/instr has to copy the most content (both files and archive
entries that are not being instrumented), this mode could be the slowest of the three. The exact
performance behavior depends on the relative speeds of your CPU and 1/0 subsystems and on the
relative content mixes between class files and class archivesin the input.

By design, in al output modes that can do jar-to-jar processing <instr>/instr does not compress the
instrumented zip entries in the output archives. This saves CPU time needed for doing compression,
usually at an acceptable cost in the increased disk space taken by the affected archive files.

Class coverage metadata. An important byproduct of class instrumentation is class metadata. As
described in more detail elsewhere, EMMA coverage is based on instrumenting basic bytecode blocks.
Every instrumentation run outputs a compact representation of data necessary to associate coverage of
an individual basic block with its parent method and class as well as the original Java source lines that
map to this basic basic (there is a metadata entry for every class in the instrumentation class set). Class
metadata from each offline instrumentation run needs to be saved in a disk file, because it will be
required for coverage stats computation and coverage report generation.

Note that when <instr>/instr writes metadatainto afile, it will by default merge incoming metadata into
the existing data in the destination file (if it exists). This behavior is also necessary to support
incremental instrumentation, as described shortly.

Class metadata merging. To avoid any ambiguities, it is necessary to completely specify how
<instr>/instr resolves duplicate data during instrumentation path processing:

1. During agiven instrumentation run, all directory and archive entriesin the instrumentation path are
processed left-to-right. All duplicates (defined as entries with the same canonical file pathnames)
are skipped. As noted above, valid Cl ass- Pat h manifest entries are also processed, in the order
they are discovered. This sequence is thus the same as it would be for classloading lookup if the
instrumentation path were used as a classpath.

2. ltis dill possible that during the same instrumentation run identical class names are encountered
(e.g., if the same class name shows up in differently named archives). To stay consistent with
clasdoading lookup rules (the first class definition in a classpath wins), <instr>/instr will
instrument and emit metadata only for the first class definition it encounters.

271P file format does not allow incremental updates. For every class archive in the instrumentation path, to replace the selected
entries with their instrumented version EMMA has to create atemporary archive that eventually replaces the original. Thisimplies
that all zip entries not being instrumented must be copied from one archive file to the other.

11

EMMA Tool Reference

3. Finaly, it is possible that multiple metadata entries for idential class names are brought together
when metadata from independent instrumentation runs is merged together. The rule here is that the
last metadata entry wins. The last entry is defined as either the last one merged into a given
metadata file or (in the case of multiple files) contained in the last filein agiven input file set.

The last point is best illustrated with an example. If both cover ageA. em and cover ageB. em
contain metadata for class Myl ass:

>java enma instr -i

ip ... -d coverageA.em. ..
>java enma instr -ip ...

-d coverageB.em ...
then the definition in cover ageB. emwinsin all these cases:

>java emma report -in coverageA em-in coverageB.em...
> ava emmm report -in coverageA emcoverageB.em. ..
> ava emma nmerge -in coverageA.em-in coverageB.em...

Similar rules apply to EMMA ANT tasks.

Incremental instrumentation and metadata merging. Asis common knowledge, when working with
javac, either from command line or via ANT's <javac> task, only the classes that were modified since
the last compilation get re-compiled. This is incredibly convenient for an individual developer, as it
makes a complex product build incremental: small changes to the source code results in quick
incremental compiles. This is indispensable for the "code some—test some—repeat” approach to
software development.

EMMA can be used such that it fully preserves the incremental nature of a build. The key to thisis how
class metadata is merged when it is output to the same file. Suppose a developer executes the following
actions (EMMA command line tools are used here for compactness, but the same is possible with an
EMMA-enhanced ANT build):

>javac -g -d classes src/ny/javal sources/*.java
>java enma instr -ip classes ...
edit sone sources ...
>javac -g -d classes src/ny/javal sources/*.java
only the changed source files get re-conpiled ..
>java enma instr -ip classes ...
only the re-conpiled class files get re-instrunented ..

In this case <instr>/instr was either in copy or in over w i t e mode and it implicitly used the same
default coverage metadata repository file, cover age. em for each instrumentation run. In the copy
mode, <instr>/instr instruments only the class files whose instrumented versions in the output directory
are older than their javac-produced original versions. Inthe over wr i t € mode case, <instr>/instr will
instrument (and overwrite) only the classes that are not already instrumented (because those would be
the classes recently recompiled by javac). All later metadata entries written to cover age. emoverride
any earlier definitions and it all works out correctly (and very fast).

Because the metadata is aways up-to-date in this scenario, the developer can run his’her tests and look
at coverage stats at any time he/she runs the tests, without doing an expensive rebuild of the entire
project.

Runtime cover age data merging

Note that the rules for merging runtime coverage data are different: the data from different

12

EMMA Tool Reference

coverage runs is assumed to correspond to the same class definitions (in most cases EMMA
will abort with an error if it detects a mismatch). Basic block coverage is merged such that the
final coverage profileisaunion of all merged profiles.

The following table summarizes the major differences between <instr>/instr output modes:

Table 2.2. <instr>/instr output mode summary

Mode Supports Supports Output behavior
jar-to-jar incremental
processing instrumentation
copy No Yes All instrumented classes are written to a

single destination directory (only
instrumented entities are written out),
regardless of whether they come from
classfiles or class archives.

overwrite Yes Yes Instrumented (and only instrumented)
classes are overwritten in-place.
Instrumented (and only instrumented)
archive entries are updated in their
archives.

ful | copy Yes No All (instrumented or not) classfilesare
writtento acl asses subdirectory of
the destination directory. All
(instrumented or not) class archives are
written out to al i b subdirectory of the
destination directory.

Internal EMMA properties that affect class instrumentation. Several property settings affect
<instr>/instr behavior:

* instr.do_suid.compensation []

e instr.exclude synthetic methods|]

* instr.exclude_bridge methods]

Most of these should normally be left with their default values. instr.do_suid.compensation [] can be

set to f al se to gain extra instrumentation processing speed when runtime execution does not involve
class de-serialization from existing files or serialization across W Ms.

3.2. ANT usage

Parameters specified as attributes

Attribute ’Description Required
[conmon EMVA task attri butes] No
i nstrpath A path-like structure specifying the Either this
instrumentation path to use. attribute, or
nstr pat hr ef
attribute, or at

13

EMMA Tool Reference

Attribute

Description

Required

|east one nested

<i nstrpat h>

element must be
present.

i nstrpat href

Sameasi nst r pat h, but given as areference to
apath defined elsewhere.

Either this
attribute, or
i nstrpath
attribute, or at
|east one nested
<i nstrpat h>
element must be
present.

destdir,outdir

The location to store instrumented class files (in

indest di r/ cl asses and instrumented
archivesarestoredindestdir/1lib
subdirectories, respectively). Ignored if
nmode=' overwrite'.

f ul | copy modeinstrumented classes are storedo

Yes, unless
de='"overwit

net adat afil e,outfile

The location to store class coverage metadata
(default: filecover age. emin the current
directory). Neither particular file name nor
extension are required.

No

mer ge

Indicates whether the metadata should be merged
into the destination et adat af i | e, if any
(default: t r ue). Any existing dataiis clobbered
otherwise.

No

node

Specifies the instrumentation output mode. Valid
values for this property are:

e copy (default): copy only instrumented class
filesand archive entriesinto dest di r
directory.

e overwite:overwriteinput classfiles and
archives,

e full copy: copy dl (instrumented or not)
classfiles and archives to
destdir/cl asses anddestdir/!lib,
respectively.

See Section 3.1, “Description” [10] for more
details.

No

filter

Adds an instrumentation filter. See Section 6.2,
“Coveragefilters’ [29] for general description of
EMMA's instrumentation filters and Section 6.2.1,
“filter syntax: ANT” [30] specifically for ANT
syntax.

No

Parameters specified as nested elements

14

EMMA Tool Reference

Element Description Required
[cormbn EMMVA t ask nested el enent s] No
<i nst r pat h> A path-like structure that specifies the Either
instrumentation path to use. instrpath
attribute, or

nst r pat hr ef
attribute, or at

least one nested
<i nstr pat h>
element must be

present.
<filter> Adds an instrumentation filter. See Section 6.2, No
“Coveragefilters’ [29] for general description of
EMMA's instrumentation filters and Section 6.2.1,
“filter syntax: ANT” [30] specifically for ANT
syntax.
<i nstr pat h> nested elements. <i nstrpat h> is a path-like structure

[http://ant.apache.org/manual/using.html#path] used to select class files and archives to be processed for
instrumentation. If a duplicate class name is encountered during a single instrumentation pass, only the
first class definition will be added to the class metadata emitted during this instrumentation path. See
Class metadata merging. [11] for more details.

Examples

* In-place instrument a certain subset of already compiled classes using overwrit e mode and
several coverage filters:

<emma enabl ed="${ emra. enabl ed}" >
<instr instrpathref="${out.dir}/classes"
node="overwite"

>
<I-- always exclude every class with a "Test" in the nane: -->
<filter excludes="*Test*" />
<l-- don't instrument everything in "${out.dir}/cl asses",

only the stuff | amworking on now. -->
<filter file="nyincludes.txt" />

<! -- additional ANT command |ine hook: -->
<filter value="${emma.filter}" />
</instr>
</ emma>

» Don't overwrite compiled classes that later need to go into official release jars (stay in copy mode).
However, use incremental instrumentation for fast personal testing:

<emma enabl ed="${ emma. enabl ed}" >
<instr instrpathref="${out.dir}/classes"
outdi r="${out.dir}/cl asses-instrunent ed"
nmer ge="yes"
filter="%{emma.filter}"

</ emma>

15

http://ant.apache.org/manual/using.html#path

EMMA Tool Reference

e Take dl jars adready produced by the product build and make test (coverage-enabled) copies of
them:

<emma enabl ed="${ emma. enabl ed}" >
<instr node="full copy"
outdi r="%${out.instr.dir}"
mer ge="no"
filter="%{emm.filter}"
>

<i nstr pat h>
<fileset dir="${out.dir}" includes="**/*_jar" />
</instrpat h>
</instr>
</ emma>

3.3. Command line usage
Synopsis

java enma instr {-ip instrunmentation path..} [-d directory] [-out nmetadat a
fil e][-mergebool ean] [-mout put node] [-ixfilter patterns..]
[cormDn options]

Options

[conmon command |ine options]

-ip, -cp, -instrpath instrunentation path..
This repeatable option sets the instrumentation path to use. Besides the OS-specific separator
character, individual path segments can aso be separated with commas.

-d, -dir, -outdir directory
The location to store instrumented class files (in f ul | copy mode instrumented classes are stored
in dest di r/ cl asses and instrumented archives are stored in dest di r/ | i b subdirectories,
respectively). Ignored if - misoverwrit e.

-out, -outfile nmetadata file
The location to store class coverage metadata (default: file cover age. em in the current
directory). Neither particular file name nor extension are required.

-merge (y[es]|n[o]) . - o
This flag indicates whether the metadata should be merged into the destination - out file, if any
(default: t r ue). Any existing dataiis clobbered otherwise.

-m -outnode (copy|overwrite|fullcopy)
Specifies the instrumentation output mode. Valid values for this property are:

» copy (default): copy only instrumented class files and archive entriesinto dest di r directory.
e overwite:overwriteinput classfilesand archives.
* fullcopy: copy al (instrumented or not) classfilesand archivesto dest di r/ cl asses and

destdir/1i b, respectively.
See Section 3.1, “Description” [10] for more details.

16

EMMA Tool Reference

-ix, -filter filter patterns..
This repeatable option adds an instrumentation filter. See Section 6.2, “Coverage filters’ [29] for
general description of EMMA coverage filters and Section 6.2.2, “filter syntax: command line” [31]
specifically for command line syntax.

Examples

* In-place instrument a certain subset of already compiled classes using overwrit e mode and
several coverage filters:

>java emma instr -moverwite -ip out/classes -ix -*Test* -ix @wyfilters.txt

« Don't overwrite compiled classes that later need to go into official release jars (stay in copy mode).
However, use incremental instrumentation for fast personal testing:

>java emma instr -nerge y -ip out/classes -d out/cl asses-instrunented

e Take dl jars adready produced by the product build and make test (coverage-enabled) copies of
them:

>java emma instr -mfullcopy -nerge no -ip out/Product.jar -d out-instrunented/

Diagnostics

The default EMMA command line tool behavior is not to use Syst em exi t () on exit unless an
explicit - exi t option is specified. If that is done, the error codes returned viaSyst em exi t () areas

follows:
0 | Successful completion.

1|Failure due to incorrect option usage. This error code is aso returned when command line
usage (- h) isrequested explicitly.

2 |All other failures.

4. <report>/report

<report>/report — offline coverage report generator.

4.1. Description

<report>/report is EMMA's offline coverage report generator. It reads in an arbitrary number of data
files containing class metadata and runtime coverage data and generates one or several coverage reports
of desired types. Several aspects of coverage reporting (detail level, column order, column sorting,
coverage metrics failure markup, etc) can be customized for a given report type.

What isreported on. Each invocation of <report>/report requires a set of input metadata and runtime
coverage data filess EMMA coverage stats are derived exclusively from the classes that appear in the

17

EMMA Tool Reference

combined class metadata as represented by thisinput. To put it differently, a coverage report can reflect
as much as the state of the entire product codebase or as little as one Java package or APl being worked
on by agiven developer at the moment.

Report depth. To understand EMMA's approach to generating coverage reports, the following
paradigm should be kept in mind:

e agiven coverage report covers all entities in the instrumentation set, referredtoasal | cl asses
in the reports

* all cl asses entity contains Java packages

» [for classes compiled with full debug info] Java packages contain Java source files

e [for classes compiled with full debug info] Java source files contain Java classes (in general,
more than one)

» [for classes compiled without full debug info] Java packages contain Java classes
» Javaclasses contain methods (which, in turn, could be broken down into basic blocks)

(The reason EMMA makes a distinction between classes with and without full debug info is that without
the Sour ceFi | e attribute in al input classes it is in general impossible to make the association
between classes and their source files and that in turn impacts how metrics like line coverage are rolled
up. The above hierarchy is easier to understand if you realize that without the full debug info the source
file hierarchy level is absent.)

Correspondingly, <report>/report calculates and presents coverage metrics in a way that allows for
drilling down into datain a top-down fashion, starting withal | cl asses and going all the way to the
level of individual methods and source lines (in the HTML report). Coverage metrics are rolled up at the
levels of individual methods, classes, source files, packages, and for the entire instrumentation set
(al I cl asses). The concept of "report depth” represents how deep you are in this hierarchy.

Different report types produced by <report>/report differ in how they reflect this data hierarchy:

e The plain text report is a low-overhead report type for quick coverage summary viewing and
processing by tools like grep and Perl. It startswithanal | ¢l asses summary and progressively
adds further drill-down sections. Because a columnar plain text format is limited in how well it can
present hierarchical data, it is recommended that for report depths beyond al | and package you
use the HTML report instead.

e The HTML report can provide the most detail and is intended for human viewing. It starts with an
al | cl asses summary page and for larger report depths links it to package summary pages and
then further to individual source file and class summary pages. Source/class summary pages can
further embed source files and show method coverage rollups as well as highlight individual source
line coverage states.

» The XML report exits for integration purposes and leverages the tree structure of an XML document
to most truthfully represent the above-mentioned data hierarchy.

Because generating certain report types for very large projects can be time-consuming, reducing the
default report depth is a good way to limit the amount of detail that is generated, a useful feature for
individual development work.

Valid values for a report depth are al | , package, sour ce, cl ass, and et hod. In genera, a
certain report depth value implies the level of detail that includes the summary for all items at that level

18

EMMA Tool Reference

as well as coverage breakdown summaries for their children. The amount of information rendered for a
given depth value is always inclusive of lesser depth values, so increasing the report depth aways
increases the amount of details that is rendered. As a specia case, when full debug info is available,
cl ass isequivalentto sour ce.

Report units. EMMA coverage metrics could be unweighted or weighted, that is derived from basic
block coverage where each block counts either with an equal weight or with a weight proportional to the
number of Java bytecode instructions in it. The default <report>/report behavior is to use weighted
metrics. This includes all metrics that are sensitive to basic block content: line and block coverage.
Weighted basic block coverage is a recommended metric for all situations, because it can simulate line
coverage when no debug information has been compiled into application classes. If desired, the
traditional (unweighted) metrics could be selected using the units option.

Coverage metrics. A very useful feature of HTML and plain text reports created by <report>/report is
the ability to highlight entities that fail a given coverage metric. The plain text report does it by
appending a "!" to a failing coverage metric and the HTML report highlights those in red. Combined
with ability to sort report columns, this feature allows an individual developer to zoom in to the
packages and classes that demand the most attention with respect to coverage.

Sourcepath and source linking. Although EMMA coverage calculations are based on basic block
coverage profiling, <report>/report can also map block coverage to Java source file lines. If the HTML
report generator is set to met hod depth and is configured with a valid source path and the instrumented
classes were compiled with enough debug information, the generator will embed source files in the
source file/class summary report pages and highlight covered/not covered lines accordingly.

Sour cepath and cover age stats

Referencing the original Java source files is optional during coverage report generation and
does not affect how EMMA coverage stats are computed (these stats are based entirely on the
class metadata and the debug info available in the . cl ass data at the instrumentation time).
However, to avoid report generation errorsit is your responsibility to ensure that the versions of
Java sources used for reporting are the same as the ones used during instrumentation.

4.2. ANT usage

Parameters specified as attributes

Attribute | Description Required
[cormbn EMVA task attributes] No
sour cepat h An optional source path to use for report No

generation (a path-like structure). It isinterpreted
asalist of directories (separated by the
OS-specific classpath separator or comma)
containing . j ava source files. The local path
names within each directory should reflect class
package names. (Currently, only the HTML report
generator uses this data, and only at et hod

report depth.)

sour cepat hr ef Same assour cepat h, but given as areference No
to apath defined elsewhere.

units Specifies whether weighted or unweighted No

coverage metrics are calculated. Valid values are:

e instr (default): use metrics weighted by

19

EMMA Tool Reference

Attribute

Description

Required

bytecode instruction count;

e count : usetraditional metric definitions (each
basic block has equal weight).

depth

Specifies the amount of detail to be included in the
generated coverage reports, as described in Report
depth. [18]. Valid values (in order of increasing
level of detail) are:

« all

e package

e source

e class

« et hod

(default values are report type-specific, see below)

No

col ums

Specifies which report columns and in which order
to use for report generation, as a comma-separated
list of columnids. Valid column ids are the name
of the item reported on and various types of
coverage: nane, cl ass, net hod, bl ock, and

| i ne. Coverage typesthat are not available for a
given item type and debug info level are
automatically ignored. Reports can use only a
subset of all possible columns (and different report
types can use different subsets). Duplicate column
names are ignored. Setting this attribute is the
same as setting the report.columns [] property for
al report types (default values are report
type-specific, see below).

No

sort

Specifies report column sorting order, asa
comma-separated list of column ids prefixed with
“+” for ascending or “-” for descending directions.
Thefirst columnid isthe primary sort and
subsequent column ids are secondary sorts, in the
order given. Only the column ids specified by

col unms attribute are considered. Setting this
attribute is the same as setting the report.sort []
property for al report types (default:

+bl ock, +nane, +nmet hod, +cl ass).

No

metrics

Specifies the threshold coverage metric values for
agiven set of columns (all coverage percentages
that are below a given threshold are marked up in
the report types that support this). Thevalueisa
commarseparated list of column id-value pairs,
with the value being the minimum required
coverage percentage. Setting this attribute is the
same as setting the report.metrics [] property for

No

20

EMMA Tool Reference

Attribute Description Required

all report types (default:
met hod: 70, bl ock: 80, | i ne: 80, cl ass: 1Q0).

encodi ng Setsthe charset id for report output files (thisis No
best done at the individual report type level).
Setting this attribute is the same as setting the
report.out.encoding [] property for al report
types (default values are report type-specific, see
below).

Parameters specified as nested elements

Element |D&ecription Required
[cormbn EMMVA t ask nested el enents] No
<infileset> <fileset> |A FileSetthat selectsa set of metadata and Yes
coverage data files that form the basis of coverage
calculations in the generated report(s). It is an error
not to include any metadata or any coverage data
within this set of files.
<sour cepat h> A path-like structure that specifies an optional No
source path to use for HTML report generation.
<t xt> Instructs <report> to generate a plain-text At least one of
coverage report. The report can be further <t xt >,
customized as shown below. <htm >,
<xm >is
required
<ht m > Instructs <report> to generate an HTML coverage | At least one of
report. The report can be further customized as <t xt >,
shown below. <htm >,
<xm >is
required
<xm > Instructs <report>to generate an XML coverage | At least one of
report. The report can be further customized as <t xt >,
shown below. <ht m >,
<xm >is
required

<i nfil eset > nested elements. <i nfi | eset > nested elements are configured as any other FileSet
[http://ant.apache.org/manual/CoreTypes/fileset.ntml] datatype in ANT. Additionally, EMMA's version
of FileSet data type allows fi | e attribute in ANT versions earlier than 1.5.x (which is useful for
selecting asinglefile by its known name without using an explicit PatternSet).

<sour cepat h> nested elements. <sour cepat h> is a path-like structure
[http://ant.apache.org/manual/using.html#path] that can be used to point <report>/report to the location
of your Java source files. If the HTML report depth is set to met hod and the instrumented classes were
compiled with enough debug information, the report generator will embed whichever source files it can
find inside the HTML report pages and highlight covered/not covered lines.

<t xt >, <ht m >, and <xm > nested elements. These nested elements create plain text, HTML, and
XML coverage reports, respectively. At least one report type must be specified (at most one configurator
of any given report type can be nested inside a given <report>). All of them accept the same set of

21

http://ant.apache.org/manual/CoreTypes/fileset.html
http://ant.apache.org/manual/using.html#path

EMMA Tool Reference

report configuration attributes (if a particular attribute is not specified for an element, its value is
inherited from the <report> parent. If the parent task does not specify an attribute value either, the usual
EMMA property inheritance rules determine the eventual value):

Attribute Description Required

units Overrides the coverage metric units for agiven No
report type. It is perhaps best to set this at the
parent <report> level, so that al generated reports
use consistent units.

depth Overrides the report depth for a given report type. No
The default values are:

e txt report: al |

e htm report: net hod

« xm report: met hod

col umms Overrides the report column selection and order No
for agiven report type. The default values are:

e txt report:
cl ass, net hod, bl ock, | i ne, nane
e htm report:
nane, cl ass, net hod, bl ock, |'i ne
e xm report:
nane, cl ass, net hod, bl ock, |i ne
sort Overrides the report column sort order for agiven No
report type.
metrics Overrides the report coverage metrics thresholds No

for agiven report type. It is perhaps best to set this
at the parent <report> level, so that all generated
reports use consistent metrics.

outfile Overrides the default report output file location. No
The default settings are:

e txt report: filecover age. t xt inthe
current directory

e htm report: filecover age/ i ndex. ht m
(note that the HTML report is usually split over
multiple files, so it is best to specify afile
pathname that is inside a dedicated
subdirectory)

« xm report: filecover age. xn inthe
current directory

encodi ng Overrides the output file charset encoding used for No
agiven report type. The default values are:

EMMA Tool Reference

Attribute Description Required

e txt report: mirrorsthefi | e. encodi ng
JRE system property

e htm report: | SO 8859- 1
e« xm report: UTF- 8

Examples

* Generate plain text and XML report types, al with default settings:

<emma enabl ed="${ emra. enabl ed}" >
<report >
<l-- collect all EMVA data dunps (netadata and runtine): -->
<infileset dir="$%${coverage.dir}" includes="*.em *.ec" />

<txt />

<xm />

</report >
</ emma>

» Generate three report types, with common metrics and column sorting, but with different report
depth and column orderings:

<emma enabl ed="${ emma. enabl ed}" >
<report sourcepath="${src.dir}"
sort =" +bl ock, +nanme, +net hod, +cl ass"
nmetri cs="net hod: 70, bl ock: 80, | i ne: 80, cl ass: 100"

<infileset dir="${coverage.dir}" includes="*.em *.ec" />

<I-- for every type of report desired, configure a nested
el ement; various report paranmeters
can be inherited fromthe parent <report>
and i ndividually overridden for each report type:
-->
<txt outfile="${coverage.dir}/coverage.txt
dept h="package"
col unmms="cl ass, net hod, bl ock, | i ne, nane’

/>

<xm outfile="${coverage.dir}/coverage. xm "
dept h="package"

/>

<htm outfil e="${coverage.dir}/coverage. htm"
dept h=" et hod"
col utms="nane, cl ass, net hod, bl ock, | i ne"

/>

</report >
</ emma>

» Generate an HTML report with some customization, load metadata and runtime coverage data from
asingle session file, use a <dirset> to set the sourcepath:

23

EMMA Tool Reference

<emma enabl ed="${ emra. enabl ed}" >
<report >
<infileset file="%{coverage.dir}/coverage.es" />

<sour cepat h>
<dirset dir="${basedir}" >
<i ncl ude nane="**/src" />
</dirset>
</ sour cepat h>

<htm outfile="${coverage.dir}/index.htm"

col ums="nane, nethod, |ine"
sort="+li ne, +nane"
metrics="|ine: 80"
/>
</report>
</ emma>

4.3. Command line usage

Synopsis
java emmma report {-in data files..} {-r report types..} [-sp sourcepath..]
[cormDn options]

Options

[conmon command |ine options]

-in, -input netal/coverage data files..
This repeatable option selects a set of metadata and coverage data files that form the basis of
coverage calculations in the generated report(s). It is an error not to include any metadata or any
coverage data within this set of files.

-r, -report (txt|htm|xm)..
This repeatable option selects report type(s) to be generated.

-sp, -sourcepath list of source directories..
This repeatable option sets the (optional) source path to use for report generation. It isinterpreted as
alist of directories (separated by the OS-specific classpath separator or comma) containing . j ava
source files. The loca path names within each directory should reflect class package names.
(Currently, only the HTML report generator uses this data, and only at met hod report depth.)

report generation options..
Unlike its ANT equivalent, report command line tool does not have dedicated options for
controlling coverage report generation. If necessary, they can be set using generic -D, -properties,
and other mechanisms.
So, for example, to change the default location of the HTML report you would override the
report.out.file[] property:
>java enma report -Dreport.htm .out.file=mydir/mycoverage. htm

(report.htm .out.file can be abbreviated to report.out.file if the command

24

EMMA Tool Reference

generates a single report type)

Examples

» Generate plain text and XML report types, both with their default settings:
>java emma report -r txt,xm -in coverage.em -in coverage. ec
e Generatethe HTML report only, but override the default output location:
>java emma report -r htm -in coverage.em coverage.ec -sp src/ -Dreport. htnl . out

» Generate three report types, with common metrics and column sorting, but with different report
depth and column orderings. Use - pr oper ti es option to pull in alarge number of report property
overrides:

>java emma report -r txt,xm,html -props ny.properties -in coverage.em coverage.
wherefilernmy. properti es contains:
report.sort

report.netrics
report.depth

+bl ock, +nane, +net hod, +cl ass
met hod: 70, bl ock: 80, | i ne: 80, cl ass: 100
package

report.txt.out.file
report.txt.columms

cover age/ cover age. t xt
cl ass, net hod, bl ock, | i ne, nane

cover age/ cover age. xm

report.xm .out.file

report.htm .out.file
report. htnl.depth
report. htm . col unms

cover age/ cover age. ht m
met hod
nane, cl ass, net hod, bl ock, | i ne

» Generate an HTML report with some customization, load metadata and runtime coverage data from
asingle session file:

>java enmma report -r html -in coverage.es -sp src/ \
-Dreport. col ums=nane, net hod, | i ne \
-Dreport.sort=+line, +tname \
-Dreport.netrics=line: 80

Diagnostics

The default EMMA command line tool behavior is not to use Syst em exi t () on exit unless an
explicit - exi t option is specified. If that is done, the error codes returned viaSyst em exi t () areas
follows:

0 | Successful completion.
1|Failure dueto incorrect option usage. This error code is aso returned when command line

25

EMMA Tool Reference

\usage (- h) isrequested explicitly.

2 \Au other failures.

5. <merge>/merge

<mer ge>/mer ge — offline meta- and runtime coverage data compressor.

5.1. Description

<merge>/merge is EMMA's offline meta- and runtime coverage data compressor. It reads in an
arbitrary number of data files containing class metadata and/or runtime coverage data and compresses

all of itinto asingle session datafile.

Why merge? Despite the fact that all other EMMA tools can do in-memory merging of an arbitrary
number of input data files, there are valid reason for using <mer ge>/mer ge tool:

keeping everything together

Coverage metrics for a particular application could be determined by a large set of meta and
runtime coverage data files, not necessarily collected in a single application run. For example, a
Swing client could run in one JVM and a remoted server in another, possibly on a different host
machine. Or atestsuite could be spread over a sequence of forked VM processes.

Collecting all EMMA datain asingle file could be a simple matter of convenience: such a coverage
session data file is a memento of a particular state of application coverage. Such a session data file
contains all the data necessary to regenerate all coverage reports (for source code embedding in a
coverage report you also need to preserve the particular versions of sources used at the
instrumentation time: a source revision control system is agood solution for this).

data compaction

When merging data into existing files, for reasons that have to do with performance and making file
writes as transactional as possible, EMMA tools use an append-like technique. Once a given data
record is written to a file, it is never overwritten (rather, later data writes implicitly override it).
What this means is that EMMA's un-merged data files may not always store data in the most
compact way possible. Processing them with <merge>/merge eliminates wasted file storage and
recovers disk space.

5.2. ANT usage

Parameters specified as attributes

tofile,file

(default: filecover age. es inthe current
directory).

Attribute | Description Required
[cormbn EMVA task attributes] No
mergefile,outfile, Overrides the location to store merged data No.

Parameters specified as nested elements

26

EMMA Tool Reference

Element Description Required
[conmon EMVA task nested el enent s] No
<infileset><fileset> |AFileSt that selectsan arbitrary mix of metadata Yes
and coverage data to be merged.

<i nfil eset > nested elements. <i nfi | eset > nested elements are configured as any other FileSet
[http://ant.apache.org/manual/CoreTypes/fileset.ntml] data type in ANT. Additionally, EMMA's version
of FileSet data type allows fi | e attribute in ANT versions earlier than 1.5.x (which is useful for
selecting asingle file by its known name without using an explicit PatternSet).

Examples

* Coallect all EMMA metadata and runtime coverage data files and merge them into a single session

file
<emra>
<merge outfile="${coverage.dir}/coverage. es" >
<fileset dir="${coverage.dir}" includes="*.em *.ec" />
</ mer ge>
</ enma>

* Compact asingle datafile:

<enma>
<merge outfile="${coverage.dir}
<fileset file="%${coverage.dir
</ mer ge>
</ enma>

/ cover age. es" >
}/ coverage. es" />

5.3. Command line usage

Synopsis

java emma nerge{-indata files..}[-outdata fil e][conmon opti ons]

Options

[cormpn conmand |ine options]

-in, -input netal/coverage data files..
This repeatable option selects an arbitrary mix of metadata and coverage data files to be merged.

-out, -outfile output nerge data file
Overrides the location to store merged data (default: file cover age. es inthe current directory).

Examples

27

http://ant.apache.org/manual/CoreTypes/fileset.html

EMMA Tool Reference

» Coallect al EMMA metadata and runtime coverage data files and merge them into a single session
file:

>java emmm nmerge -in coverage.em-in coverage.ec -out coverage.es

* Compact asingle datafile:

>j ava enmmm nmerge -in coverage.es -out coverage.es

Diagnostics

The default EMMA command line tool behavior is not to use Syst em exit () on exit unless an
explicit - exi t option is specified. If that is done, the error codes returned viaSyst em exi t () areas
follows:

0 | Successful completion.

1|Failure due to incorrect option usage. This error code is aso returned when command line
usage (- h) isrequested explicitly.

2 |All other failures.

6. Defining the instrumentation set

6.1. How EMMA determines which classes get
instrumented

Although EMMA's instrumentation is very fast (it is usually fast enough so that the overall processing
time is dominated by file 1/0), the key to making EMMA into an even faster tool for individual
development is to make EMMA do just the right amount of work, i.e. define the right instrumentation
set of classes.

Understanding what gets instrumented is also important for another reason: EMMA coverage reports are
based exclusively on the classes in the instrumentation set as implied by coverage metadata.

Instrumentation set. The set of classes that get instrumented in a given invocation of a tool like
<instr>/instr or <emmajava>/emmarun is determined by the following rules:

i. Firdt, aset of classes eligible for instrumentation is determined by an instrumentation path. For
<instr>/instr thisis set via an explicit option and for <emmajava>/emmarun it is the same as the
application classpath. Note that only Java classes contain executable code and are eligible for
instrumentation: Java interfaces are never instrumented by EM MA3.

ii. Next, the set of eligible classes as determined by the above step can be further narrowed down by a
set of coverage inclusion and exclusion filters.

ii. Finally,

« inthe offline processing mode, all remaining eligible classes are in fact instrumented and added

3Strictly sﬂé&l&rﬁg 'm%es can contain executable bytecode, but it usually corresponds to field initializer expressions that
execute unconditionally when the interface is |oaded.

28

EMMA Tool Reference

e in the on-the-fly processing mode, <emmajava>/emmarun behavior with respect to the
remaining eligible classes depends on whether the full classpath scan mode (f ul | et adat a
(- f) option) isturned on:

e by default, this mode is not on and only the classes actually used by the application are
instrumented and added to the coverage metadata (this happens on demand);

« if this mode is on, al remaining igible classes are added to the metadata (this happens
before the application starts running).

What this means in practice is that you choose the right set of class directories and archives via the
instrumentation path option and then narrow it further down via a number of coverage filters, described
next.

6.2. Coverage filters

Wildcards. EMMA coverage filters are lists of familiar * ,?-wildcard class name patterns:

» full Java class names are implied, with “. "'s (dots) as Java package separators;
e a“*” inapattern stands for zero or more class name characters,

e a“?” inapattern stands for exactly one class name character

Filterswork " across directories"

Y ou should not think of coverage filters as applying at the file level. Instead, think of them as
applying at the classpath level. Thus, if you exclude “* Test *”, for example, it will have effect
on al application classes that are subject to instrumentation, no matter from how many
classpath directories and/or .jars they come.

Inclusions and exclusions. Sometimes all you want isto zoom in to a particular Java package and don't
want to specify along list of exclusion patterns (that also needs to be updated each time someone on
your team adds a new Java package to the application). Other times, you do want to include all of the
application's classes but would like to exclude just a few packages or name patterns (e.g., your testcases
or perhaps a package that is well-tested and can be excluded from coverage anaysis).

EMMA coverage filters support all such scenarios and more, in a reasonably concise and intuitive
fashion. Each coverage filter pattern is either an inclusion or an exclusion pattern:

» By default, a pattern is an inclusion pattern. This can aso be made explicit by prefixing it with a“+”
(plus sign).

e A patternisan exclusion patterniif it is prefixed with a“- " (minus sign).

Informally, the way inclusions and exclusions work can be summarized as follows: aclass nameisin the
instrumentation set if it is included and not excluded. An empty list of inclusion patterns implicitly
includes everything (i.e, it is like “+*”) and an empty list of exclusion patterns implicitly excludes
nothing. Furthermore, a class name isincluded if it matches at least one of the inclusion patterns and not
excluded by any exclusion pattern. It is best to show the forma matching rule via pseudocode, followed
by some examples:

29

EMMA Tool Reference

Inclusion/exclusion matching algorithm.

if (inclusions is not enpty)
bool ean i ncluded = fal se;
foreach (pattern in inclusions)
if (pattern matches cl assnane)

i ncluded = true;
br eak;

}

if (not included) return classnane_is_excl uded;

}

if (exclusions is not enpty)
foreach (pattern in excl usions)
if (pattern matches cl assnane) return classnane_is_excl uded;

}

return classnane_is_incl uded;

6.2.1. filter syntax: ANT

EMMA ANT (sub)tasks that can take instrumentation filter strings either asafi | t er attribute or as
<fi | t er > nested elements follow the same specification syntax:

filter attribute. The attribute value is afilter string, which is a list of inclusion/exclusion patterns,
separated with white space and/or commas. Each inclusion/exclusion pattern is a *,?-wildcard class
name mask, prefixed with + and - for inclusion and exclusion, respectively. It is legal to omit a prefix,
in which case the inclusion prefix, +, isimplied.

It is aso possible to specify alist of inclusion/exclusion patterns to be loaded from an externa file. To
do so, you can set the fi | t er attribute to an @prefixed file name. The file should contain a list of
inclusion/exclusion patterns, one per line (empty lines and lines starting with a“#” are ignored).

<filter> nested element. This nested element can be configured through a combination of the
following attributes:

Attribute Description

val ue Specifiesalist of inclusion/exclusion patterns, separated with white space and/or
commas. Each inclusion/exclusion patternisa* ,?-wildcard class name mask,
prefixed with + and - for inclusion and exclusion, respectively. It islega to omit
aprefix, in which case theinclusion prefix, +, isimplied. Note that this attribute
alows you to specify amixed list of inclusions and exclusions.

i ncl udes Specifies alist of patterns, separated with white space and/or commas. Each
patternisa* ,?-wildcard class name mask, interpreted as an inclusion pattern. All
explicit +/- prefixes are ignored.

excl udes Specifiesalist of patterns, separated with white space and/or commas. Each
patternisa* ,?-wildcard class name mask, interpreted as an exclusion pattern. All
explicit +/- prefixes areignored.

30

EMMA Tool Reference

Attribute Description

file Specifiesalist of patternsto be loaded from afile with agiven name. Thefile
should contain alist of inclusion/exclusion patterns, one per line (empty lines and
lines starting with a“#” are ignored). Each inclusion/exclusion pattern is a

* ?-wildcard class name mask, prefixed with + and - for inclusion and exclusion,
respectively. It islegal to omit a prefix, in which case the inclusion prefix, +, is
implied. Note that such afile can contain amixed list of inclusions and exclusions.

ANT tip

Note that if any of these attributes is set to an empty string it isignored. Thisis convenient for
providing team-wide ANT filter "hooks' that are overridden differently by individual
developersusing ANT command line (- Denma. fi l ter=. .., etc).

Examples
Note that all these different ways of specifying instrumentation filters can be used in a combination. The

result is a union of all specified patterns. The following examples all specify the same set of
inclusion/exclusion patterns:

<filter includes="com foo.*" excludes="comfoo.test.*, comfoo.*Test*" />

<filter includes="comfoo.*" />
<filter excludes="comfoo.test.*, comfoo.*Test*" /[>

<filter value="+comfoo.*, -comfoo.test.*, -comfoo.*Test*" />

<filter excludes="com foo.*Test*" file="nyfilters.txt" />
wheremmyfil t ers.txt filecontainstheselines:

-com foo.test.*
+com f 0o. *

6.2.2. filter syntax: command line

EMMA command line tools that can accept instrumentation filter strings do it viathe - i x option. This
repeatable option should be set to a list of inclusion/exclusion patterns, separated with white space
and/or commas. Each inclusion/exclusion pattern is a * ,?-wildcard class hame mask, prefixed with +
and - for inclusion and exclusion, respectively. It is legal to omit a prefix, in which case the inclusion
prefix, +, isimplied.

It is also possible to specify alist of inclusion/exclusion patterns to be loaded from an external file. To

31

EMMA Tool Reference

do so, you can set the option value to point to an @prefixed file name. The file should contain alist of
inclusion/exclusion patterns, one per line (empty lines and lines starting with a“#” are ignored).

Examples
Note that all these different ways of specifying instrumentation filters can be used in a combination. The

result is a union of all specified patterns. The following examples al specify the same set of
inclusion/exclusion patterns:

>java emma ... -ix +tcomfoo.*,-comfoo.test.*,-comfoo.*Test* ...
L]

>java emma ... -ix comfoo.* -ix -comfoo.test.*,-comfoo.*Test* ...
L]

>java emma ... -ix -comfoo.*Test* -ix @yfilters.txt

wheremnmyfil ters.txt filecontainstheselines:

-com foo.test.*
+com f 0o. *

7. Common ANT task and command line
options

7.1. Common ANT task attributes and nested elements

All EMMA tasks and subtasks have a set of common attributes and nested elements:

Table2.3. Common EMMA ANT task attributes

Attribute Description Required

enabl ed If settof al se, disablesthe corresponding No (everything
EMMA ANT task or subtask. Thiscanbeusedto | isenabled by
effect asimple form of build control flow (default: default)
true).

verbosity Setsthe verbosity level for agiven task or an entire| No (defaults to
<emma> group of tasks. Valid valuesin the order i nfo)

of increasing verbosity are:

e silent (sameassever e): only severe
errors are reported;

e qui et (sameaswar ni ng): only warnings

32

EMMA Tool Reference

Attribute Description Required

and severe errors are reported;

e i nf o: default verbosity level, with EMMA
reporting on completion of various activities,
warnings, and errors

e ver bose: this setting makes EMMA chattier
than normal, with extra progress reporting;

e tracel,trace2,trace3: these settings
enable internal tracing (useful mostly for
debugging).

(default: i nf o).

properties This option specifies a pathname for an EMMA No
property override file, in the standard

java. util.Properties format. See
Chapter 3, EMMA Property Reference [35] for
more information on setting EMMA properties.

Table2.4. Common EMMA ANT task nested elements

Element Description Required

<property> This nested element setsasingle EMMA property. No
Itisthe ANT equivalent of - Dcommand line
option and is provided mostly for internal testing
(EMMA ANT tasks provide proper attributes and
nested elements for al public tool settings). See
Chapter 3, EMMA Property Reference [35] for
more information on setting EMMA properties.

<pr opert y> nested element. This nested element can be used to set a generic EMMA property as a
name-value pair using the following attributes:

Attribute Description Required
nane Property name (without “enma. " prefix). Yes
val ue Property value. Yes

7.2. Common command line options

All EMMA command line tools have a set of common options:

-p, -props, -properties .properties file
This option specifies a pathname for an EMMA property override file, in the standard
java. util.Properties format. The pathname could be either relative (in which case it is
resolved relative to the JVM's current working directory) or absolute. See Chapter 3, EMMA
Property Reference [35] for more information on setting EMMA properties.

33

EMMA Tool Reference

This option sets asingle EMMA property. Note that this is different from using the VM - D option
(the nan®e is not “enma. ”-prefixed). See Chapter 3, EMMA Property Reference [35] for more
information on EMMA properties.

-exit

- Si

To enable tool chaining and integration viamai n() entry methods, EMMA command line tools do
not terminate via j ava. | ang. System exi t () by default. If desired for shell and makefile
integration, this can be changed by using this option on the command line. The Diagnostics section
on every tool's reference page details the error codes the tool returns to the operating system.

| ent

-qui et
-ver bose

-h,

These options set EMMA tool verbosity levels to be much lower than normal, lower than normal,
and above normal, respectively. These options are shortcuts to setting the verbosity.level []
property.

-hel p
This option causes EMMA tools to print their usage summaries to Syst em out . The longer form
of the option resultsin slightly more detailed usage printout.

Chapter 3. EMMA Property Reference

The behavior of EMMA tools and runtime is influenced by a number of EMMA properties (see
Section 2, “EMMA property summary” [36] for the full list). These properties address severa needs:

e It could be tedious or impractical to specify al individual command line options for certain aspects
of EMMA behavior (e.g., coverage report generation properties). A large set of EMMA property
value overrides can be kept in afile that is referenced with a single option or from the classpath.

e Certain kinds of instrumented runtimes cannot be configured easily via command line options (e.g.,
servlets or Enterprise Java Beans (EJBS)). Again, other ways of passing property overrides are need
in such cases, such the VM system options or classpath resource files.

1. Specifying EMMA properties
Given an EMMA pr oper ty (from thetablesin Section 2, “EMMA property summary” [36]), it can be
specified in several different ways:
» asaJVM system property named enma. pr operty;
» asaproperty named emma. pr operty definedinanexternal j ava. uti |l . Properti es filg
e asaproperty named pr operty definedinaj ava. uti | . Properti es classloader resource;
» asanexplicit ANT task <pr oper t y> or command line (- D) property override.

The general rule is that when a property is provided at the VM system level, its name must be prefixed
with “erma. ” in order to bein EMMA namespace.

Examples

The following shows different ways of overriding the default coverage session dump file pathname from
ANT or command line. Using emma. properties or properti es ANT is convenient when you
want to load a large block of EMMA property settings without keeping them in your makefile or

buil d. xm :
* From ANT:
<emmaj ava enabl ed="${emma. enabl ed}" |i bcl asspat href="enma. i b"
dunpsessi ondat a="yes" properties="mny.properties"
cl assnanme=" Mai n"
cl asspat href ="run. cl asspat h"
/>

wherefilemy. properti es setssession. out. fil etosomenydir/nyfil e vaue
e From command line:
>j ava enmmarun -Dsession.out.file=nydir/nyfile ...

> ava enmarun -properties mny.properties ...
>java -cp {directory containing emra. properties} emmarun ...

35

EMMA Property Reference

>j ava - Denma. session.out.file=nydir/nyfile emmarun ...
>j ava - Denma. properti es=ny. properties enmmarun ...

wherefilemy. properti es setssession. out. fil etosomenydir/ nyfil e vaue

EMMA property lookup order. Because of multiple ways to specify the same EMMA property, it is
necessary to document the exact property lookup mechanism in order to disambiguate potential
conflicts. The following lists all possible property lookup layers, in the order from the least specific to
the most specific (in other words, later definitions override earlier definitions):

1. Certain properties like report.txt.out.encodi ng, start out with their default values
reflecting Java built-in system properties like fi | e. encodi ng. Other properties have their
defaults set in EMMA code.

2. A property can besetinan external j ava. uti | . Properti es file whose pathname is the value
of the VM system property enma. properties (- Dema. properties=fil enane).
EMMA propertiesin such afile are not prefixed with “enma. ”

3. A property can be set at the WM system property level, using - Demra. pr opert y=val ue
syntax.

4. A property can be set in a classloader resource named enma. properti es using the usual
java. util . Properties format (without the “enmma. " prefix). The resource is looked up first
in the most specific of the {current, thread context} pair of classloaders. If neither one is more
specific, the lookup is done in the current classloader. If the system classloader is more specific
than either the current or the context classloader, then the system classloader is used.

5. A property can besetinan external j ava. uti |l . Properti es file whose pathnameisthe value
of a properties ANT task attribute or a - properti es command line option. EMMA
properties in such afile are not prefixed with “emma. ”.

6. A propety can be st via a property ANT task nested element
(<property name='nanme' val ue='value'/>) or a-D EMMA command line option
(- Dpr oper t y=val ue). (Without the “emma. " prefix: don't confuse this with JVM system
properties.) Note that in the <r epor t > task case this mechanism is largely redundant, because all
report generation properties have dedicated ANT task attributes.

Property shortcuts. In the special case of report generation properties (r eport. *) there is one
additional complication. Any property name that follows the r eport. nane patterns is actualy a
report property shortcut in the sense that is applies to al report types (plain text, HTML, XML). For
some aspects of report generation (e.g., r eport. uni t s) thisis very appropriate, but for others (e.g.,
report. out.encodi ng) you are likely to want report type-specific settings. To do so, you can
specify areport.report _type. name property. For example, report.t xt. out. encodi ng
is more specific thanr epor t . out . encodi ng as far as the plain-text report generator is concerned.
Note that the <r epor t > ANT task makes this more convenient that the command line case, because it
provides convenience override attributes on all nested <t xt >, <ht i >, etc elements.

2. EMMA property summary

Table3.1. EMMA file output properties

36

EMMA Property Reference

Property: coverage.out.file

Defaullt: cover age. ec

Tools affected: EMMA runtime (EMMA-instrumented classes)

Description: In the offline instrumentation mode, setting this property is currently the only
way to override the pathname of the runtime coverage output file. If the
pathname is not absolute, it is resolved relative to the current JRE directory
(user. di r system property). Any existing datain the target fileis
overwritten unlessthecover age. out . mer ge modeist r ue.

Property: cover age. out . nmer ge

Default: true

Tools affected: EMMA runtime (EMMA-instrumented classes)

Description: When runtime coverage data is dumped by EMMA runtime, this property
specifies whether any existing data in the target file should be merged into or
overwritten.

Property: net adata. out.file

Default: cover age. em

Tools affected: <instr>/instr

Description: For tools that can output class instrumentation metadata, this property sets the
output file pathname. If the pathname is not absolute, it is resolved relative to
the current JRE directory (user . di r system property). Any existing datain
the target file is overwritten unless the net adat a. out . ner ge modeis
true.

Property: nmet adat a. out . mer ge

Default: true

Tools affected: <instr>/instr

Description: For tools that can output class instrumentation metadata, this property
specifies whether any existing data in the target file should be merged into or
overwritten.

Property: session.out.file

Defaullt: cover age. es

Tools affected: <emmajava>/emmarun, <mer ge>/merge

37

EMMA Property Reference

Description: For tools that can output combined metadata+coverage (i.e., session) data, this
property sets the output file pathname. If the pathname is not absolute, itis
resolved relative to the current JRE directory (user . di r system property).
Any existing datain the target file is overwritten unless the
sessi on. out . mer ge modeist r ue.

Property: sessi on. out . mer ge

Defaullt: true

Tools affected: <emmajava>/emmarun, <mer ge>/merge

Description: For tools that can output combined metadata+coverage (i.e., session) data, this

property specifies whether any existing data in the target file should be
merged into or overwritten.

Table3.2. EMMA report generation properties

Property: report.units

Default: instr

Tools affected: <emmajava>/emmarun, <report>/report

Description: During coverage report generation, this property selects either weighted
(i nst r) or unweighted (count) coverage metrics. See Report units. [19] for
more details.

Property: report.depth

Defaullt: report. dept h isset to met hod and overridden for the plain-text report
type:
* report.txt.depth:all

Tools affected: <emmajava>/emmarun, <report>/report

Description: During coverage report generation, this property selects the report depth level
covered by the report. Valid values (in order of increasing level of detail) are
al I , package, sour ce, cl ass, and met hod. See Report depth. [18] for
more details.

Property: report.col ums

Defaullt: report. col ums issettonane, cl ass, net hod, bl ock, | i ne and

overridden for the plain-text report type:

38

EMMA Property Reference

Tools affected:

Description:

 report.txt.colums:cl ass, net hod, bl ock, | i ne, nane
<emmajava>/emmarun, <report>/report

During coverage report generation, this property specifies which coverage
metrics and in which left-to-right order to render in the report output (the

XML report is an exception because it is not columnar: instead, the column
order is used for top-to-bottom XML element rendering). Valid column ids are
the item name and various types of coverage: nane, cl ass (class coverage),
nmet hod (method coverage), bl ock (block coverage), and | i ne (line
coverage). Coverage types that are not available for a given item type and
debug info level are automatically ignored. It is perfectly legal so use only a
subset of all possible metrics (e.g., reporting both block and line coveragesis
somewhat of an overkill).

Property:
Default:

Tools affected:

Description:

report.sort
+bl ock, +nane, +net hod, +cl ass
<emmajava>/emmarun, <report>/report

During coverage report generation, this property specifies how to sort data by
coverage metrics: which metricsto sort by, sort directions, and sort order. It
should be set to acomma-separated list of metricids (nane, cl ass,

nmet hod, bl ock, and| i ne), with each metric id prefixed with “+” for
ascending or “-” for descending sort direction. Multiple sorts are applied in the
left-to-right order of the metric ids as specified by this property. It is perfectly
legal to sort only a subset of all possible metrics/columns.

Property:
Defaullt:

Tools affected:

Description:

report.netrics
nmet hod: 70, bl ock: 80, |i ne: 80, cl ass: 100
<emmajava>/emmarun, <report>/report

During coverage report generation, this property specifies how to highlight
data that fails minimum coverage requirements (only applies to plain-text and
HTML reports). It should be set to a comma-separated list of metric id-value
pairs, with the value being the minimum required coverage percentage
(separated by acolon). Metricsids are nane, cl ass, net hod, bl ock, and
[i ne. Itisnot necessary to specify the required percentage for every metric
used in a given report.

Property:
Default:

report.out.file
report.out.fil eisnotsetandisinstead overridden for all report types:
e report.txt.out.file:coverage.txt

e report.htm .out.fil e:coverage/index. htni

39

EMMA Property Reference

Tools affected:

Description:

* report.xm .out.file:coverage.xm
<emmajava>/emmarun, <report>/report

During coverage report generation, this property can be used to override the
default locations for the output files. When arelative pathname is specified, it
isresolved relative to the current JRE directory (user . di r system property).
Note that the HTML report generator creates secondary HTML files beyond
the report home page file. These fileswill be put in asubdirectory that is a
sibling of the home page file and it thus makes sense to have at |east one
subdirectory level specified forreport. ht m . out. fil e (asisthe case
with the default value). EMMA will create any intermediate output directories
as needed. Output files are always overwritten.

Property:

Default:

Tools affected:

Description:

report. out.encodi ng

report. out.encodi ng defaultstothe JREf i | e. encodi ng system
property and is overridden for the HTML and XML report types:

 report.htn.out.encoding:l SO 8859-1

e report.xm.out.encoding: UTF- 8

<emmajava>/emmarun, <report>/report

During coverage report generation, this property can be set to customize the

character encoding used for the output files. Default values provided by
EMMA should be adequate in most situations.

Table3.3. EMMA instrumentation properties

Property:
Default:
Tools affected:

Description:

i nstr.do_sui d _conpensation
true
<emmajava>/emmarun, <instr>/instr

Because the bytecode instrumentor used by EMMA needsto synthesize a
static classinitializer when there is none already and because classinitiaizers
are considered for seriaization UID calculations by the default SUID
algorithm, EMMA will add a compensating ser i al Ver si onUl Dfieldto
the instrumented classiif this property settot r ue. Thisisuseful for running
applications and tests when Java classes are (de)serialized from previously
saved content or across client-server connections when not all VMs are
running instrumented classes. This property can be set to f al se to dlightly
speed up EMMA processing if such compensation is not needed (e.g., when
no serialization is used).

40

EMMA Property Reference

Property: i nstr.exclude_synt hetic_net hods

Default: true

Tools affected: <emmajava>/emmarun, <instr>/instr

Description: Depending on the compiler used, the original application classes can contain
any number of "synthetic" methods that implement certain Java language
features (class literals, inner class accessors, etc) through bytecode that has no
representation in the original sources. In most cases, excluding these methods
from instrumentation and coverage reporting is the correct thing to do. Thisis
the default EMMA behavior.

Property: i nstr.exclude_bri dge_net hods

Default: true

Tools affected: <emmajava>/emmarun, <instr>/instr

Description: J2SE 1.5 compilersintroduce a new kind of "synthetic" methods used for

mapping new features like generics to the existing class format. These
methods do not have a source code representation. In most cases, excluding
these methods from instrumentation and coverage reporting is the correct
thing to do. Thisisthe default EMMA behavior.

Table 3.4. EMMA logging properties

Property:
Default:
Tools affected:

Description:

verbosity. | evel
info
al toals, including EMMA runtime (EMMA-instrumented classes)

This property sets the verbosity of EMMA logging. Valid values are (in the
order of increasing verbosity):

e silent (sameassever e): only severe errors are reported;

e qui et (sameaswar ni ng): only warnings and severe errors are
reported;

* i nf o: default verbosity level, with EMMA reporting on completion of
various activities, warnings, and errors

» ver bose: this setting makes EMMA chattier than normal, with extra
progress reporting;

 tracel,trace2,trace3: these settings enable internal tracing (useful
mostly for debugging).

41

Glossary

line coverage

instrumentation run

instrumentation set

class metadata

coverage runtime data

coverage session data

mergeable option

repeatable option

Coverage metric whereby every source line is given a coverage
percentage. EMMA derives line coverage from basic block
coverage. The details of this computation are published elsewhere.

A single invocation of the instr command line tool or the <instr>
ANT task.

A set of Java . cl ass definitions that are included in an EMMA
report. Note that this set is usually smaller than any set of files input
into an EMMA tool because not all input classes are executable and
users can do additional filtering.

A set of binary Java class descriptors that record details of class
structure like the number of methodsin a class, their name and basic
block structure. As long as the original classes are not recompiled,
the same metadata can be used for any number of coverage profiling
runs. See also Class coverage metadata. [11].

A set of binary Java class descriptors that reflect a particular
coverage profiling run (which method and basic blocks were hit for
which class, etc). As long as they correspond to the same metadata,
several such data sets can be merged together.

A combination of metadata and runtime coverage data, usually
obtained during an on-the-fly application session or as a result of
using <merge>/merge processor. When this combination is
consistent (the runtime data corresponds to the classes in the
metadata), it is sufficient for a coverage report to be produced.

See repeatable option.

An ANT task nested element or a command line option that could be
used multiple times within a given tool invocation, with the resulting
property value being a union of all provided inputs (with duplicates
removed, if that makes sense for a given property). In most cases, an
individual input value can also be a comma-separated list of values.

42

	EMMA Reference Manual
	Table of Contents
	Chapter 1. Installation and System Requirements
	Chapter 2. EMMA Tool Reference
	1. Overview
	2. <emmajava>/emmarun
	2.1. Description
	2.2. ANT usage
	2.3. Command line usage

	3. <instr>/instr
	3.1. Description
	3.2. ANT usage
	3.3. Command line usage

	4. <report>/report
	4.1. Description
	4.2. ANT usage
	4.3. Command line usage

	5. <merge>/merge
	5.1. Description
	5.2. ANT usage
	5.3. Command line usage

	6. Defining the instrumentation set
	6.1. How EMMA determines which classes get instrumented
	6.2. Coverage filters
	6.2.1. filter syntax: ANT
	6.2.2. filter syntax: command line

	7. Common ANT task and command line options
	7.1. Common ANT task attributes and nested elements
	7.2. Common command line options

	Chapter 3. EMMA Property Reference
	1. Specifying EMMA properties
	2. EMMA property summary

	Glossary

